The Cybernetic Brain Page 10
As I mentioned earlier, Walter's research career was centered on EEG work, and this, like the tortoises though in a different register, again thematized the brain as a performative organ. And the point we need to dwell on now is that, as I remarked in chapter 1, one can be curiousabout the performative brain in a way that a cognitive conception hardly invites. If one thinks about conscious mental operations, as in mainstream AI and the cognitive sciences, there is not much to be curious about. The task for AI is thus to model on a computer familiar cognitive feats like playing chess, solving equations, or logical deduction. In contrast, the performative brain is more of a challenge. We have little conscious access to processes of adaptation, for example. Who knows what a performative brain can do? This is a sense in which the brain appears as one of Beer's exceedingly complex systems, endlessly explorable. Finding out what the brain can do was a central aspect of Walter's research throughout his career, and we can examine some interesting aspects of that here.56
Walter's 1953 book The Living Brainis largely devoted to the science of the normal brain and its pathologies, epilepsy and mental illness. But in different passages it also goes beyond the pathological to include a whole range of what one might call altered states and strange performances: dreams, visions, synesthesia, hallucination, hypnotic trance, extrasensory perception, the achievement of nirvana and the weird abilities of Eastern yogis and fakirs—the "strange feats" of "grotesque cults" (1953, 148) such as suspending breathing and the heartbeat and tolerating intense pain57 What should we make of this?
1. It exemplifies the sort of curiosity about the performative brain that I just mentioned—this is a list of odd things that brains, according to Walter, can do.58
2. It conjures up an understanding of the brain as an active participant in the world. Even in the field of perception and representation, phenomena such as dreams and hallucinations might be taken to indicate that the brain does not copy the world but assimilates sensory inputs to a rich inner dynamics. The tortoise did not thematize this aspect of the brain (except, to a limited degree, in its scanning mechanism), but it is part of what I tried to get at in chapter 2 by mentioning the work of Kauffman and Wolfram on the endogenous dynamics of complex systems, which we will see elaborated in in the following chapters.59
3. It is clear that Walter spoke with personal authority about some items on his list of strange performances, while others were abstracted from a more general awareness of other cultures, especially of the East, with India never all that far away in the British imagination. What strikes me about all of the items on the list is that they refer to aspects of the self that are devalued in modernity. We could think of the paradigmatic modern self in terms of the self-contained individual, dualistically opposed to other selves and the material world, a center of reason, calculation, planning, and agency; and measured against such a yardstick dreamers and madmen are defective selves. Or, to put the point more positively, it appears almost inevitable that curiosity about the performative brain is liable to lead one to a nonmodern conception of the self, different from and more expansive than the modern. We might see yogic feats, for instance, as another example of ontological theater—pointing to an understanding of the brain and self as endlessly explorable, exceedingly complex systems and, at the same time, pointing to the sort of performances one might attempt given such a conception of the brain (but that one might never imagine in relation to the representational brain). We can also note that a certain nonmodern spirituality begins to surface here in association with the nonmodern self—a species of earthy spirituality that goes with embodied yogic performances, say, rather than the purified spirituality and the "crossed-out God" of Christianity that Latour (1993) characterizes as part of the "modern settlement." This form of spirituality will also reappear in the following chapters.60
4. Walter associated particular altered states and strange performances with specific technologies of the self,as I will call them, following Michel Foucault (1988). We have already encountered several examples of these—the specific material setups that Walter used to drive his robots mad (contradictory conditioning across different sensory channels), his techniques for restoring them to sanity (leaving them alone for extended periods, switching them on and off, disconnecting circuits), and their presumptive equivalents in the human world—and we can examine more of them as we go on. But now I should note that the technologies that will concern us are not substantively the same ones that interested Foucault. Foucault's concern was with the histories of specific techniques of self-control,aimed at forming specific variants of the autonomous freestanding individual, of the modern self as I just de fined it. The technologies that we need to explore, in contrast, undermine the modern duality of people and things by foregrounding couplings of self and others—another instance of ontological theater. On Walter's account, inner states of the brain and, by extension, the self were not to be ascribed to pure inner causes, but to intersections with the nonself, to external configurations like the cross-conditioning setups associated with madness. To emphasize this, I will refer to such techniques as technologies of the nonmodern self. From this angle, too, we see how a conception of the performative brain can lead to a nonmodern decentering of the self—a theme that will come back repeatedly in the following chapters.61
5. The Living Brain did not simply offer a catalog of altered states and technologies of the self. In more or less detail, Walter also sought to sketch out the mechanisms that connected them. His most detailed accounts were of the go of madness, along the lines sketched out above, and epilepsy (see below). But he also argued that CORA could be taken to illuminate conditioning mechanisms by which Eastern yogis acquired their odd powers over otherwise autonomous bodily functions; that nirvana—"the peace that passeth understanding, the derided 'happiness that lies within' "—could be understood as "the experience of homeostasis" (1953, 39; more on homeostasis in the next chapter); and so on. Again, cybernetics as brain science appears here as the other side of a performative brain that inhabits spaces of ecstasy and madness as well as the everyday world.
6. If Walter's list of strange performances and altered states seems odd and wild, it is because the marginalization of many of its entries has been central to the constitution of modernity and the conception of the dualist, freestanding modern self. The East, with its yogis and fakirs, is the other to modern science, the modern self, and the modern West. Dreams and visions are, shall we say, at the edges of modern consciousness.62This is the nonmodernity of cybernetics, once more. But . . .
7. There was a time when the list appeared less wild: the sixties. Madness and ecstasy, the East and Eastern spirituality, strange performances, altered states, explorations of consciousness—these were some trademark preoccupations and practices of the sixties counterculture. We can examine below a couple of direct crossovers from Walter and The Living Brain to the sixties, but to make the connection another way, we could think of the work of a canonical sixties author, Aldous Huxley. Huxley's visionary account of his first experience of mescaline in The Doors of Perception(1954) became required reading in the sixties, along with its sequel, Heaven and Hell (1956; published as a single volume in 1963). And what interests me here is that Heaven and Hell is isomorphous with The Living Brain in the respects now under discussion. It, too, offers a long catalog of altered states running from madness to ecstasy and enlightenment, coupled both with an exegesis in terms of Eastern spirituality (specifically Buddhism) and with scientific explanations of the origins of such states. This isomorphism between Walter and Huxley points, I think, to a commonality between cybernetics and the sixties, precisely in a shared interest in the performative brain, a curiosity about what it can do, and, in general, a fascination with nonmodern selves.63 We can return to the sixties in a moment, but first we need to examine another aspect of Walter's technical EEG research.
Flicker
"Flicker" is a long-standing term of art in experimental psychology, referring to visual eff
ects induced by flickering lights (Geiger 2003, 12–15). A spinning top with black and white bands induces perceptions of color, for example. Walter became interested in flicker and incorporated it into his EEG research in 1945, when he came across a new piece of technology that had become available during the war, an electronic stroboscope. Staring at the machine through closed eyelids, he reported, "I remember vividly the peculiar sensation of light-headedness I felt at flash rates between 6 and 20 [per second] and I thought at once 'Is this how one feels in a petit mal attack?—Of course this could be how one can inducea petit mal attack" (Walter 1966, 8).64 And, indeed, when he experimented with a strobe on an epileptic patient, "within a few seconds a typical wave-&-spike discharge developed as predicted." The quotation continues: "This was enormously exciting because I think it was the first time that a little theory [in EEG research] based on empirical observation had actually been confirmed by experiment. This meant that there might be some hope of reinstating the EEG as a scientific rather than merely utilitarian pursuit. . . . This was one of the critical turning points in our history." The scientific import of flicker in EEG research was thus that it offered a new purchase on the performative brain, and a new neurophysiological and clinical research program opened up here, pursuing the effects of "photic driving" at different frequencies with different subjects. Walter and his colleagues at the Burden, including his wife, Vivian Dovey, experimented on nonepileptic as well as epileptic subjects and found that (Walter 1953, 97) "epileptic seizures are not the exclusive property of the clinically epileptic brain. . . . We examined several hundred 'control' subjects—schoolchildren, students, various groups of adults. In three or four percent of these, carefully adjusted flicker evoked responses indistinguishable from those previously regarded as 'diagnostic' of clinical epilepsy. When these responses appeared, the subjects would exclaim at the 'strange feelings,' the faintness or swimming in the head; some became unresponsive or unconscious for a few moments; in some the limbs jerked in rhythm with the flashes of light." It turned out the optimal flicker frequency for the induction of such effects was often hard to find, and at the Burden Harold "Shippy" Shipton built a feedback apparatus (Walter 1953, 99) "in the form of a trigger circuit, the flash being fired by the brain rhythms themselves. . . . With this instrument the effects of flicker are even more drastic than when the stimulus rate is fixed by the operator. The most significant observation is that in more than 50 per cent of young normal adult subjects, the first exposure to feedback flicker evokes transient paroxysmal discharges of the type seen so often in epileptics" (fig. 3.12).
To follow the details of this research would take us too far afield, so let me make a few comments on it before going back to the sixties.65 First, Walter's work here exemplifies my earlier remarks about the possibility of being curious about the performative brain. If our capacity for cognitive tasks is immediately before us—I already know that I can do crosswords and sudoku puzzles—the epileptic response to flicker was, in contrast, a surprise, a discovery about what the performative brain can do. Second, this research points again to the psychiatric matrix in which Walter's cybernetics developed. Third, experiments aimed at inducing quasi-epilieptic fits in schoolchildren should only make us grateful for the controls on human-subjects experimentation that have since been introduced.66 Fourth, flicker is a nice exemplification of my notion of a technology of the self, a material technology for the production of altered states. If you want a paradigmatic example of a technology of the nonmodern self, think of flicker. Fifth and finally, Shippy's feedback circuit deserves some reflection. In the basic flicker setup the brain was pinned down in a linear relation to the technology. The technology did something—flickered—and the brain did something in response—exhibited epileptic symptoms. This counts as a piece of ontological theater inasmuch as it thematizes the performative brain, the brain that acts rather than thinks. But it does not thematize the adaptive brain, the key referent of cybernetics per se: there is no reciprocal back-and-forth between the brain and its environment. Feedback flicker, in contrast, staged a vision of the adaptive brain, albeit in a rather horrifying way. The strobe stimulated the brain, the emergent brainwaves stimulated the feedback circuit, the circuit controlled the strobe, which stimulated the brain, and so on around the loop. We could say that the brain explored the performative potential of the material technology (in an entirely nonvoluntary, nonmodern fashion), while the technology explored the space of brain performance. I suggested earlier that the tortoise was unsatisfactory as ontological theater inasmuch as its world was largely passive and unresponsive, and I therefore want to note that feedback flicker offers us a more symmetric ontological spectacle, lively on both sides—a dance of agency between the human and the nonhuman. What acted in these experiments was genuinely a cyborg, a lively, decentered combination of human and machine.
Figure 3.12.Feedback-controlled flicker. Source: V. J. Walter and W. G. Walter, "The Central Effects of Rhythmic Sensory Stimulation," Electroencephalography and Clinical Neurophysiology, 1(1949), 57–86, p. 84, fig. 18.
We can come back to this below in a discussion of the history of biofeedback, and at a more general level in the following chapter on Ashby's cybernetics.
Flicker and the Sixties
Walter and his colleagues experimented with strobes not only on laboratory subjects but also on themselves, and (Walter 1953, 101) "we all noticed a peculiar effect . . . a vivid illusion of moving patterns whenever one closed one's eyes and allowed the flicker to shine through the eyelids. The illusion . . . takes a variety of forms. Usually it is a sort of pulsating check or mosaic, often in bright colours. At certain frequencies—around 10 per second—some subjects see whirling spirals, whirlpools, explosions, Catherine wheels." Again we can understand these observations as a discovery about the performative brain, continuing a longer tradition of research into such effects in experimental psychology. Walter (1953, 107–13) in fact conjectured that the moving patterns were related to the scanning function of the alpha waves (as materialized in the tortoise): since there is no motion in the strobe light, perhaps the pulsation and whirling in the visual effects comes from the scanning mechanism itself, somehow traveling around the brain. But the language itself is interesting. This passage continues: "A vivid description is given by Margiad Evans in 'A Ray of Darkness': 'I lay there holding the green thumbless hand of the leaf. . . . Lights like comets dangled before me, slow at first and then gaining a fury of speed and change, whirling colour into colour, angle into angle. They were all pure unearthly colours, mental colours, not deep visual ones. There was no glow in them but only activity and revolution.' "67 What should we make of a passage like that? The word that came to my mind when I first read it was "psychedelic." And I immediately thought of some key texts that were required reading in the sixties, especially Huxley's The Doors of Perception. Then I was fortunate enough to obtain a copy of a wonderful recent book by John Geiger called Chapel of Extreme Experience (2003).68 Geiger traces out beautifully how Walter's work on flicker entered into sixties culture. I have little substance to add to Geiger's account, but I want to review his story, since it adds importantly to our topic.
We need to think of three lines of development. First and most conventionally, Walter's observations on flicker fed into a distinctive branch of work in experimental psychology aimed at elucidating its properties, exploring, for example, the kinds of images and visions that flicker produced, and into philosophical reflections on the same. Interestingly, these explorations of flicker were typically entwined with explorations of the effects of psychoactive drugs such as mescaline and LSD. It turned out that the hallucinogenic effects of these drugs are intensified by flicker and vice versa. These fascinating branches of psychological and philosophical research on the performative brain flourished in the 1950s and 1960s but seem since to have been largely forgotten—no doubt due to the criminalization of the drugs.69 Of more direct interest to the student of popular culture is that Aldous Huxley in
deed appears in this story. His 1956 book Heaven and Hell indeed includes flicker, experienced on its own or in conjunction with LSD, in its catalog of technologies of the nonmodern self (A. Huxley 1956, 113–14).
At the wildest end of the spectrum, in the late 1950s flicker came to the attention of the group of writers and artists that centered on William Burroughs and Allen Ginsberg, often to be found in Tangiers, where Paul Bowles was a key figure, or staying at the Beat Hotel, 9 rue Git le Coeur in Paris. As I mentioned earlier, the Beats' connection to Walter was textual, chancy, and undisciplined, going via The Living Brain. Burroughs read it and was fascinated to find that "consciousness expanding experience has been produced by flicker."70 For the Beats also, flicker and drugs ran together. In 1959, when Ginsberg took acid for the first time at the Mental Research Institute in Palo Alto, it was in the framework of a typical Grey Walter setup: "Burroughs suggested he did so in concert with a stroboscope. The researchers . . . connected the flicker machine to an EEG, so that Ginsberg's own alpha waves would trigger the flashes." I mentioned earlier the strikingly cyborg aspect of such a configuration, and interestingly, Ginsberg experienced it as such (quoted by Geiger 2003, 47): "It was like watching my own inner organism. There was no distinction between inner and outer. Suddenly I got this uncanny sense that I was really no different than all of this mechanical machinery all around me. I began thinking that if I let this go on, something awful would happen. I would be absorbed into the electrical grid of the entire nation. Then I began feeling a slight crackling along the hemispheres of my skull. I felt my soul being sucked out through the light into the wall socket." Burroughs also gave a copy of The Living Brain to another of the Beats, the writer and artist Brion Gysin, who recognized in Walter's description of flicker a quasi-mystical experience he had once had on a bus, induced by sunlight flashing through the trees. Gysin in turn discussed flicker with another member of Burroughs's circle, Ian Sommerville, a mathematics student at Cambridge, and in early 1960 Sommerville built the first do-it-yourself flicker machine—a cylinder with slots around its circumference, standing on a 78 rpm turntable with a 100 watt lightbulb in the middle (fig. 3.13). It turned out that fancy and expensive stroboscopes were not necessary to induce the sought-after effects—this cheap and simple Dream Machine (or Dreamachine), as Gysin called it, was quite enough (Geiger 2003, 48–49).71